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ABSTRACT

Neural networks have recently gained attention as a fast
and flexible vehicle to microwave modeling, simulation and
optimization. In this paper a new microwave-oriented
knowledge based neural network (KBNN) is proposed, in
which microwave knowledge in the form of empirical func-
tions or analytical approximations are incorporated into
neural networks. The proposed technique enhances neural
model accuracy especially for unseen data and reduces the
need of large set of training data. The advantages of the
KBNN are demonstrated by MESFET and transmission
line modeling examples.

1. Introduction

The drive for manufacturability-oriented design and re-
duced time-to-market in microwave industry requires de-
sign tools that are accurate and fast. In recent years a new
CAD approach based on neural network models has been
introduced for microwave impedance matching, modeling,
simulation and optimization [1] {2] [3] [4]. Neural models
can be much faster than original detailed EM/physics mod-
els, more accurate than polynomial and empirical models,
allow more dimensions than table lookup models and are
easier to develop when a new device/technology is intro-
duced [5].

At present, most neural network models are extracted
from training data. Large amount of training data is usu-
ally needed to ensure model accuracy. Generating large
amount of training data could be very expensive for mi-
crowave problems because original detailed simulation/
measurement has to be performed for many combinations
of different values of geometrical /material/process param-
eters in the EM or device physics problems. Adding prior
knowledge into neural networks is an attractive way to
improve model generalization capability [6]. The exist-
ing approaches to incorporate knowledge are largely using
symbolic information in the form of rules to establish the
structure and weights in a neural network, e.g., [7], and
are often oriented to pattern recognition area. However

in microwave modeling areas the most important knowl-
edge are more functional than symbolic/structural {8) [9],
making existing knowledge network methods unsuitable for
microwave applications.

In this paper we propose a new microwave-oriented
knowledge based neural network (KBNN) in which mi-
crowave knowledge in the form of empirical functions or
analytical approximations are incorporated into neural net-
works. The proposed technique enhances neural model
accuracy especially for unseen data and reduces the need of
large set of training data. The advantages of the proposed
network are demonstrated by MESFET and transmission
line modeling examples.

2. Proposed Knowledge Based Neural Net-
work (KBNN) and Its Training

The proposed KBNN structure is a nonfully connected
structure shown in Figure 1. There are 7 layers in the struc-

Fig. 1: The proposed Knowledge Based Neural Network
(XBNN) structure.

ture, namely input layer X, knowledge layer Z, boundary
layer B, region layer R, normalized region layer R’, nor-
malized knowledge layer Z’ and output layer Y. Knowledge
layer Z is the place where microwave knowledge resides in
the form of empirical functions ¥(.),

z=",(x,w,), :=12,..,K, (1)
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where x is a vector including neural network inputs z;,t =
1,2,..., K, and w; is a vector of parameters in the knowl-
edge formula. Boundary layer B can incorporate knowl-
edge in the form of problem dependent boundary functions
B(.) or in the absence of boundary knowledge just as linear
boundaries,

b = B;(X,V,), = 1,2,...,1&'{, (2)

where v; is a vector of parameters in B; defining an open
or closed boundary in the input space X. Let o(.) be a
sigmoid function. Region layer (R) contains neurons to
construct regions,

Ky
Ty = H O'(CY,'jbj + 0,‘]'),

=1

i=1,2,... K, (3)

where a;, and 6,; are the scaling and bias parameters, re-
spectively. Normalized region layer R’ contains rational
function based neurons to normalize the outputs of region
layer,
T'I' = Al
i =, 3
Zj:rl Ty

Normalized knowledge layer Z’ contains second order neu-
rons combining knowledge neurons and normalized region
neurons,

d=zrl, i=12%...Kp, Ku=K,=K+ (5

i=12..., K, Kp=K, (4)

Output layer Y collects all the information from normal-
ized knowledge layer by a linear function.

K,
y= Zﬂtz:‘*'ﬂo (6)
=1
where 3, reflects the contribution of normalized knowledge
neuron z, to output neuron y and fg is the bias parameter.
The prior knowledge encoded in ¥(.) and/or B(.) needs
not to be very accurate and complete. The constant coef-
ficients in the original empirical functions can be replaced
by trainable parameters and more bias/scale parameters
can be added to provide extra variability among different
neurons. The proposed structure was inspired from the fact
that practical empirical functions are usually valid only in
a certain region of parameter space. To build a neural
model for the whole space, several empirical formulas and
the mechanism to switch among them are needed. The
final switching boundary and final values of parameters in
knowledge functions are determined by training.

Since our network does not follow a regularly layered
Multilayer Perceptron structure and microwave empirical
functions instead of standard activation functions are used
in neurons, conventional backpropagation training is not
applicable. A new backpropagation scheme is developed
and combined with a quasi-Newton based I, optimization
algorithm in the training of KBNN. The training errors
first propagate from Y to Z’ layers. Then the propagation
is split into two parallel paths, one through the knowledge
layver Z, and the other through the region and boundary
lavers, i.e., R/, R and B, down to input layer X.

3. MESFET Modeling Example

This example demonstrates a physics-based MES-
FET (1} model through the proposed KBNN. Device phys-
ical/process parameters(channel length, channel width,
doping density, channel thickness) and terminal voltages,
i.e., gate-source voltage and drain-source voltage, are neu-
ral network input parameters and drain current, i.e., 24, is
the neural network output. The original problem requires a
slow numerical procedure to solve the physics-based equa-
tions {10]. The neural network models (KBNN or MLP)
are much faster than original physics based FET model.
Knowledge-based neural networks (KBNN) are developed
incorporating empirical formulas of Ladbrooke [9]. To con-
firm the neural model, a new set of data, which is never
seen during training, is used to test the neural network.
The accuracy of the model is represented by the error and
correlation coefficient between neural model output and
testing data. The model accuracy of KBNN is much bet-
ter than that of MLP as indicated in Table 1. With 300
training samples, KBNN can achieve similar accuracy as
that from MLP trained by 500 training samples. Figure 2
and Figure 3 show the IV curves from MLP and KBNN.
With insufficient training data of only 100 samples, KBNN
is visiblely more reliable than standard MLP.
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Fig. 2: IV curves from MLP for MESFET modeling exam-

ple. The model was trained with insufficient training data
of only 100 samples.

4. Transmission Line Modeling Example

This example demonstrates the proposed KBNN in
modeling transmission lines for analysis of high speed VLSI
interconnects [5]. Electromagnetic (EM) simulation of
transmission lines is slow especially if it needs to be re-
peatedly evaluated. Neural networks learned from EM
data are much faster than original EM simulation. In this
example, MLP and KBNN were used to model the mutual
inductance, l15, between two conductors of a transmission
line. The inputs of the model are width of conductor,
thickness of conductor, separation between two conduc-
tors, height of substrate, relative dielectric constant and
frequency. KBNN was built with the existing empirical
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Fig. 3: IV curves from KBNN for MESFET modeling exam-

ple. The model was trained with insufficient training data
of only 100 samples.

inductance formula of Walker [8]. The ability to extrap-
olate beyond the boundary of training data is a challenge
but an important aspect of a model. The testing data in
this example was deliberately selected around/beyond the
boundary of the model effective region in input parameter
space to compare KBNN and MLP as shown in Table 2.
With enough training data, both KBNN and MLP show
good accuracy. But with small training data, KBNN shows
much better accuracy than MLP due to the built-in knowl-
edge as illustrated in Figure 4 and Figure 5.
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Fig. 4 Histogram of testing error of MLP for trans-
mission line modeling example for 4096 testing samples
around/beyond training data boundary. The model was
trained by only 100 training samples.

For both examples the model testing errors from KBNN
are less than those from MLP as shown in Figure 6 and
Figure 7, and advantage of KBNN is even more significant
when training data is insufficient.

The neural models learn component behaviors originally
seen in physics/EM models, and predict such behavior
much faster than original models. It will have a significant
impact on statistical design of microwave circuits.
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Fig. 5: Histogram of testing error of KBNN for trans-
mission line modeling example for 4096 testing samples
around/beyond training data boundary. The model was
trained by only 100 training samples.
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Fig. 6: Model accuracy of KBNN and MLP for MESFET
modeling. Testing error from KBNN is in general less than

that from MLP. The data shown are obtained from training
sample sets of sizes 100, 300 and 500.
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Fig. 7: Model accuracy of KBNN and MLP for transmission
line modeling. Testing error from KBNN is in general less
than that from MLP. The data shown are obtained from
training sample sets of sizes 100 and 500.
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training model | no.of | average largest | correlation
sample size || neural net type size weights | test error | test error | coefficient
Standard (MLP) 6-18-1 | 145 3.06% 40.16% 0.9417
Standard (MLP) 6-25-1 | 201 3.69% 38.55% 0.9626
100 Knowledge based (KBNN) | b5z3 147 1.17% 9.11% 0.9972
Knowledge based (KBNN) | b6z4 207 1.00% 10.21% 0.9979
Standard (MLP) 6-18-1 | 145 0.95% 9.85% 0.9976
Standard (MLP) 6-25-1 201 0.97% 14.05% 0.9967
300 Knowledge based (KBNN) | b5z3 147 0.72% 5.05% 0.9991
Knowledge based (KBNN) | b6z4 207 0.73% 5.32% 0.9990
Standard (MLP) 6-18-1 | 145 0.73% 6.48% 0.9989
Standard (MLP) 6-25-1 | 201 0.81% 6.54% 0.9985
500 Knowledge based (KBNN) | b5z3 147 0.63% 6.35% 0.9993
Knowledge based (KBNN) | b6z4 207 0.61% 4.33% 0.9993

Table: 1: Model Accuracy Comparison Between Standard MLP and

Knowledge Based Neural

Network (KBNN) for MESFET Modeling Example with Testing Data.

training model | no. of | average largest | correlation
sample size || neural net type size weights | test error | test error | coefficient
Standard (MLP) 6-7-1 57 2.30% 11.35% 0.9981
Standard (MLP) 6-15-1 | 121 2.78% 12.42% 0.9962
100 Standard (MLP) 6-20-1 161 3.44% 18.17% 0.9919
Knowledge based (KBNN) | b2z3 51 1.16% 6.06% 0.9993
Knowledge based (KBNN) | b4z6 128 1.12% 6.72% 0.9993
Standard (MLP) 6-7-1 57 0.90% 2.88% 0.9996
Standard (MLP) 6-15-1 | 121 0.89% 3.35% 0.9997
500 Standard (MLP) 6-20-1 | 161 0.82% 4.42% 0.9996
Knowledge based (KBNN) | b223 51 0.81% 3.30% 0.9996
Knowledge based (KBNN) | b4z6 128 0.90% 2.51% 0.9995

Table: 2: Model Accuracy Comparison Between MLP and KBNN for Transmission Lire Modeling
Example with Testing Data.
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