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ABSTRACT

Neural networks have recently gained attention as a fast

and flexible vehicle to microwave modeling, simulation and

optimization. In this paper a new microwave-oriented

knowledge based neural network (KBNN) is proposed, in

which microwave knowledge in the form of empirical func-

tions or analytical approximations are incorporated into

neural networks. The proposed technique enhances neural

model accuracy especially for unseen data and reduces the

need of large set of training data. The advantages of the

KBNN are demonstrated by MESFET and transmission

line modeling examples.

1. Introduction

The drive for manufacturability-oriented design and re-

duced time-to-market in microwave industry requires de-

sign tools that are accurate and fast. In recent years a new

CAD approach based on neural network models has been

introduced for microwave impedance matching, modeling,

simulation and optimization [1] [2] [3] [4], Neural models

can be much faster than original detailed EM/physics mod-

els, more accurate than polynomial and empirical models,

allow more dimensions than table lookup models and are

easier to develop when a new device/technology is intro-

duced [5].

At present, most neural network models are extracted

from training data. Large amount of training data is usu-

ally needed to ensure model accuracy. Generating large

amount of training data could be very expensive for mi-

crowave problems because original detailed simulation/

measurement has to be performed for many combinations

of different values of geometrical /material/process param-

eters in the EM or device physics problems. Adding prior

knowledge into neural networks is an attractive way to

improve model generalization capability [6]. The exist-

ing approaches to incorporate knowledge are largely using

symbolic information in the form of rules to ~stabli~h the
structure and weights in a neural network, e.g., [7], and

are often oriented to pattern recognition area. However

in microwave modeling areas the most important knowl-

edge are more functional than symbolic/structural [8] [9],

making existing knowledge network methods unsuitable for

microwave applications.

In this paper we propose a new microwave-oriented

knowledge based neural network (KBNN) in which mi-

crowave knowledge in the form of empirical functions or

analytical approximations are incorporated into neural net-

works. The proposed technique enhances neural model

accuracy especially for unseen data and reduces the need of

large set of training data. The advantages of the proposed

network are demonstrated by MESFET and transmission

line modeling examples.

2. Proposed Knowledge Based Neural Net-

work (KBNN) and Its Training

The proposed KBNN structure is a nonfully connected

structure shown in Figure 1. There are 7 layers in the struc-

R.

R

Fig. 1: The proposed Knowledge Based hleural Network

(KBNN) structure,

ture, namely input layer X, knowledge layer Z, boundary

layer B, region layer R, normalized region layer R’, nor-

malized knowledge layer Z’ and output layer Y. Knowledge

layer Z is the place where microwave knowledge resides in

the form of empirical functions W(.),
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where x is a vector including neural network inputs ~i, i =

,-,..., K= and Wi is a vector of parameters in the knowl-19

edge formula. Boundary layer B can incorporate knowl-

edge in the form of problem dependent boundary functions

l?(. ) or in the absence of boundary knowledge just as linear

boundaries,

where vi is a vector of parameters in Bi defining an open

or closed boundary in the input space X. Let a(. ) be a

sigmoid function. Region layer (R) contains neurons to

construct regions,

,i = ~~(~ijbj + Oij)j i=l,2, . . ..Kr (3)

where ~ij and Otj are the scaling and bias parameters, re-

spectively. h’orrnalized region layer R’ contains rational

function based neurons to normalize the outputs of region

layer,

#i . __..Q__> i=l, z,..., 1{,,, K,, = K,
E;il r,

(4)

N“ormalized knowledge layer Z’ contains second order neu-

rons combining knowledge neurons and normalized region

neurons,

z:= + ,-,..., I<z,, 1{=, = K= = 1{, (5)i=19

Output layer Y collects all the information from normal-

ized knowledge layer by a linear function.

where /?, reflects the contribution of normalized knowledge

neuron Z; to output neuron y and PO is the bias parameter.

The prior knowledge encoded in ~(.) and/or B(.) needs

not to be very accurate and complete. The constant coef-

ficients in the original empirical functions can be replaced

by trainable parameters and more bias/scale parameters

can be added to provide extra variability among different

neurons. The proposed structure was inspired from the fact

that practical empirical functions are usually valid only in

a certain region of parameter space. To build a neural

model for the whole space, several empirical formulas and

the mechanism to switch among them are needed. The

final switching boundary and final values of parameters in

knowledge functions are determined by training.

Since our network does not follow a regularly layered

Multilayer Perception structure and microwave empirical

functions instead of standard activation functions are used

in neurons, conventional backpropagation training is not

applicable. A new backpropagation scheme is developed

and combined with a quasi-Newton based 12 optimization
algorithm in the trainingof I<BNN. The training errors

first propagate from Y to Z’ layers. Then the propagation
is split into two parallel paths, one through the knowledge

layer Z, and the other through the region and boundary

layers, i.e., R’, R and B, down to input layer X.

3. MESFET Modeling Example

This example demonstrates a physics-based MES-

FET [I.] model through the proposed KBNN. Device phys-

ical/process parameters (channel length, channel width,

doping density, channel thickness) and terminal voltages,

i.e., gate-source volt age and drain-source volt age, are neu-

ral net work input parameters and drain current, i.e., id, is

the neural network output. The original problem requires a

slow numerical procedure to solve the physics-based equa-

tions [10]. The neural network models (KBNN or MLP)

are much faster than original physics based FET model,

Knowledge-based neural networks (KBNN) are developed

incorporating empirical formulas of ‘Ladbrooke [9]. To ~on-

firm the neural model, a new set of data, which is never

seen during training, is used to test the neural network.

The accuracy of the model is represented by the error and

correlation coefficient between neural model output and

testing data. The model accuracy of KBNN is much bet-

ter than that of MLP as indicated in Table 1. With 300

training samples, KBNN can achieve similar accuracy as

that from MLP trained by 500 training samples. Figure 2

and Figure 3 show the IV curves from MLP and KBNN.

With insufficient training data of only 100 samples, KBNN

is visiblely more reliable than standard MLP.
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Fig. 2: IV curves from MLP for MESFET modeling exam-

ple. The model was trained with insufficient training data

of only 100 samples.

4. Transmission Line Modeling Example

This example demonstrates the proposed KBNN in

modeling transmission lines for analysis of high speed VLSI

interconnects [5]. Electromagnetic (EM) simulation of

transmission lines is slow especially if it needs to be re-

peatedly evaluated. Neural networks learned from EM

data are much faster than original EM simulation. In this

example, MLP and KBNN were used to model the mutual

inductance, 112, between two conductors of a transmission

line. The inputs of the model are width of conductor,

thickness of conductor, separation between two conduc-

tors, height of substrate, relative dielectric constant and

frequency. KBNN was built with the existing empirical
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Fig. 3: IV curves from KBNN for MESFET modeling exam-

ple. The model was trained with insufficient training data

of only 100 samples.

inductance formula of Walker [8]. The ability to extrap-

olate beyond the boundary of training data is a challenge

but an important aspect of a model. The testing data in

this example was deliberately selected around/beyond the

boundary of the model effective region in input parameter

space to compare KBNN and MLP as shown in Table 2.

With enough training data, both KBNN and MLP show

good accuracy. But with small training data, KBNN shows

much better accuracy than MLP due to the built-in knowl-

edge as illustrated in Figure 4 and Figure 5.
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Histogram of testing error of MLP for trans-

line modeling example for 4096 testing samples

around/beyond training data boundary. The model was

trained by only 100 training samples.

For both examples the model testing errors from KBNN

are less than those from MLP as shown in Figure 6 and

Figure 7, and advantage of KBNN is even more significant

when training data is insufficient.

The neural models learn component behaviors originally

seen in physics/EM models, and predict such behavior

much faster than origimd models. It will have a significant

impact on statistical design of microwave circuits.
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Fig. FE Histogram of testing error of KBNN for trans-

mission line modeling example for 4096 testing samples

around/beyond training data boundary. The model was

trained by only 100 training samples.
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Fig. 6: Model accuracy of KBNN and MLP for MESFET

modeling. Testing error from KBNN is in general less than

that from MLP, The data shown are obtained from training

sample sets of sizes 100, 300 and 500.
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Fig. 7: Model accuracy of KBNN and MLP for transmission

line modeling. Testing error from KBNN is in general less

than that from MLP. The data shown are obtained from

training sample sets of sizes 100 and 500.
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training model no. of average largest correlation
sample size neural net type size weights test error test error coefficient

Standard (MLP) 6-18-1 145 3.06% 40.16% 0.9417

Standard (MLP) 6-25-1 201 3.69% 38.55% 0.9626
100 Knowledge based (KBNN) b5z3 147 1.17% 9.11% 0.9972

Knowledge based (KBNN) b6z4 207 1.00% 10.21% 0.9979

Standard (MLP) 6-18-1 145 0.95% 9.85% 0.9976
Standard (MLP) 6-25-1 201 0.97% 14.05% 0.9967

300 Knowledge based (KBNN) b5z3 147 0.72% 5.05% 0.9991
Knowledge based (KBNN) b6z4 207 0.73% 5.32T0 0.9990

Standard (MLP) 6-18-1 145 0.73% 6.48% 0.9989
Standard (MLP) 6-25-1 201 0.81% 6.54% 0.9985

500 Knowledge based (KBNN) b5z3 147 0.63% 6.35% 0.9993

Knowledge based (KBNN) b6z4 207 0.61% 4.33% 0.9993

Table: 1: Model Accuracy Comparison Between Standard MLP and Knowledge Based Neural

Network (KBNN) for MESFET Modeling Example with Testing Data.

training model no. of average largest correlation

sample size neural net type size weights test error test error coefficient

Standard (MLP) 6-7-1 57 2.30% 11.35% 0.9981

Standard (MLP) 6-15-1 121 2.78% 12.42% 0.9962
100 Standard (MLP) 6-20-1 161 3.44% 18.17% 0.9919

Knowledge based (KBNN) b2z3 51 1.16% 6.06% 0.9993

Knowledge based (KBNN) b4z6 128 1.12% 6.72% 0.9993

Standard (MLP) 6-7-1 57 0.90% 2.88% 0.9996

Standard (MLP) 6-15-1 121 0.89% 3.35% 0.9997

500 Standard (MLP) 6-20-1 161 0.82% 4.42% 0.9996
Knowledge based (KBNN) b2z3 51 0.81% 3.30% 0.9996
Knowledge based (KBNN) b4z6 128 0.90% 2.51% 0.9995

Table: 2: Model Accuracy Comparison Between MLP and KBNN for Transmission Line Modeling

Example with Testing Data.
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